
278 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

A Hierarchical Approach to Improve

Job Scheduling and Data Replication in Data Grid

Somayeh Abdi
1
 and Sayyed Hashemi

2

1
Department of Computer Engineering, Eslamabad_E_Gharb Branch, Islamic Azad University, Iran
2
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Iran

Abstract: In dynamic environment of data grid effective job scheduling methods consider location of required data in

dispatching jobs to resources. Also, job scheduling methods are combined with data replication mechanisms to reduce remote

data access as well as save network bandwidth. In this paper, we combine job scheduling method and dynamic data replication

to reduce data access delay and job execution time. Also, we expand our work by applying bloom filter in job scheduling

decision. In data grid, appropriate mechanisms for recording, deleting and inquiring information about data files are required

for implementing proper job scheduling method. Therefore, we apply counting bloom filter for recording/deleting and

inquiring information about data files in Replica Catalogue (RC). Result of simulation indicates that proposed job scheduling

and data replication methods reduce job execution time, also using bloom filter saves network bandwidth and reduces time of

gathering information for selecting appropriate resources in job scheduling.

Keywords: Job scheduling, data replication, RC, replica manager, resource discovery, counting bloom filter.

Received August 11, 2012; accepted March 19, 2014, published online June 26, 2014

1. Introduction

Scientific applications generate large amount of data
that could not be stored in centralized manner. Data
grid is best solution for managing and storing huge
amount of data. A data grid is a distributed collection of
computers and storage resources maintained to enable
resource sharing and coordinate problem solving in
dynamic, multi institutional virtual organizations [11].
Data intensive applications are dependent on large
amount of data; in this applications job scheduling and
data management are most important because the
performance of executing these applications depends on
data access time. Replication mechanisms are applied
to manage data; in data management field, the
replication mechanism determines which file should be
replicated, when to create new replicas and where the
new replicas should be placed [5]. The Grid Scheduler
(GS) is one of the most critical components of the
resource management systems, since it has the
responsibility of assigning resources to jobs by
considering the job’s requirements and resources status
[20]. There are different type of data replication and
scheduling strategies [14]. Trust-based, market-based
and performance-based strategies are important type of
scheduling. We use performance-based scheduling to
decrease data access time and job execution time. The
data GS approach has three phases: Resource
discovery, resource selection and job execution.
Resource discovery identify resources that can be used
with their capability when the data GS has to find a
suitable set of resources for job execution [15]. For job
scheduling decision, job scheduler should get
information about the location of required data. Since,
time of inquiring and accessing to data is the primary

cause of job execution delay in data grid. Applying
efficient method for file indexing and querying can
reduce time of gathering information for scheduling
decision. From another hand, data replication
mechanisms are applied in data grid for reducing data
access time. Most applications require special batch
files. We define a batch files as a set of files that are
accessed in executing special application with each
other. In data replication structure, replica manager
and Replica Catalogue (RC) are important
components. Replica manager manages data
movement between storage resources. RC indexes
data files that are stored in resources. For each file,
RC keeps a list of resources stored it. Lists can be
used to keep characteristic of elements in the network,
but searching in list is too time-consuming and
resource discovery by using them has very low
efficiency [15]. Bloom filter is an alternative to store
and search within characteristic of a set of elements,
representing a method to keep characteristic of
elements which reduces space utilization [19]. In this
paper we develop centralized job scheduling and
distributed dynamic data replication that consider the
changes of data access in the grid environment and it
automatically creates new replicas for popular data
files or moves the replicas to other sites when is
needed to improve the performance. Also, we apply
counting bloom filter to reduce resource discovery
time in the first phase of scheduling.

2. Related Work

There are some related works on job scheduling or

data replication in data grid as well as combining

them. Our previous work [2] only considers the most

A Hierarchical Approach to Improve Job Scheduling and Data Replication in Data Grid 279

available data at site level and does not distinguish the

importance of hierarchical bandwidth in Scheduling

Strategy (SS) in real networks. Literature [1] proposed

two level job scheduling and data replication

algorithms, but the whole computing for selecting the

best cluster and site has been done at GS and GS

became a bottleneck point in grid system and could not

tolerate in increasing the resources and users. From

other hand, centralized structure of RC decreases the

scalability of handling more data files. In [17] an

algorithm for a 2-level hierarchical structure based on

internet hierarchy has been introduced which only

considers dynamic replication and does not consider

scheduling. Literature [8] organized the data into

several data categories and this information is used to

help improving data replication placement and job

scheduling decision. Resource SS is based on the

estimation of time of executing a job in each grid site.

Literature [22] proposed centralized and distributed

dynamic replication. Also, it used shortest turnaround

time and data present as scheduling policies and

evaluated combination of scheduling and replication

strategies. In [12] bloom filter is used to implement

service discovery protocol for ad hoc networks.

Literature [18] used the bloom filter data structure for

memory efficiency. In this paper, we develop job

scheduling and data replication as well as applying

bloom filter to improve job execution in data grid.

3. The Proposed Structure

In this section, we propose hierarchical network

structure and apply two strategies for job scheduling

and data replication base on the hierarchical network

structure.

3.1. Network Structure

We depict our structure in Figure 1. In this structure we
categorized sites into different regions and defined
internal link as a link inside a region and external links
as links between different regions. Each site comprised
of several storage nodes that store replicas and process
nodes that process data operations. Also, for each site
we assign a replica manager to control data replication
and deletion and Local Scheduler (LS) to manage CPU
time. Other essential components in this structure are
GS, Data Grid Information System (DGIS) and RC. At
the start of establishing the network each site registered
itself in DGIS so, GS can query DGIS for available
resource and resource status information. We add RC
for each region to keep track a list of available replica
in the region. GS query RCs for available data and
location of them in the regions. At each site replica
manager provide a mechanism for accessing the RC on
local region. When each site store a new replica, RM
send a replica register request to RC and it add this site
to the list of sites that hold the replica. Also, when RM
deletes a replica in the site, send a replica delete request
to local RC at region and it deletes this site from list of

sites that hold the replica. All jobs submitted to GS
and for each job, GS according to the job scheduling
policy and information that gets from RC and DGIS
select appropriate region and site respectively and then
submits the job to LS in the selected site. When a job
assigned to LS, RM at site is responsible for preparing
data for job execution.

Figure 1. Data grid architecture.

3.2. Scheduling and Replication Policy

In proposed structure we apply centralized job

scheduling that use the overall information of data

grid system for job assignment. We apply distributed

RC to eliminate the bottleneck and increase the

scalability in this structure. RC in regions tolerates the

load of calculating available data on regions and sites.

So, GS acts as a coordinator for job assignment.
SS considers the locations of required data at region

and site level in job assignment decision. Algorithms 1
and 2 indicate pseudo code at GS and Regional RC
sides. According to Algorithm 1 at First SS determines
the appropriate region (with the most available data);
this will reduce the external link congestion and
remote data access as well as save network bandwidth.
Then, it selects the appropriate site in the elected
region. It will diminish the amount of internal data
movement too. When a job is accepted to data grid
environment the GS sends job’s required data to all
RCs in regions. Each RC by comparing the required
data with list of available data computes the size of
available data and sends the result to GS, so GS select
the region with maximum available data. After
selecting the best region, GS send the query to
associated RC and it computes available data for each
site and sends result for GS to select the site with the
most available data. Finally, when a job is submitted
to LS at selected site, RM according to replication
policy manages required data transferring for job
execution. DRS as the replication strategy determines
which replica will be transferred for job execution and
how to handle this new replica. DRS avoid remote
data access and external link communications. Our
DRS has two phases: DRS select the replica for

280 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

transferring to local site and DRS decide how to hold
this new replica. For the first phase, DRS search replica
in local region that job should be executed. If the
replica does not exist in this region, DRS search other
regions and select the replica from the region that the
maximum external link bandwidth between local region
and it is established. In second phase, if there is enough
space in the local site, new replica is stored, otherwise
DRS delete the replicas in are existence in local region
to make space for new replica. Therefore, DRS
distinguish between internal and external replicas and
avoid from deleting the replica that did not exist on the
local region before and it has been replicated from
other regions recently. BHR strategy, in the first phase,
searches all regions to find the replica and did not
distinguish between local region and external regions.
In the second phase, BHR deleted files based on LFU
and did not consider region level data locality.

Algorithm 1: SS (Job J)

Required_Data=Get_required_data(Job j);

RCs[n]= Get_Available_RCs(From DGIS)

#n indicates number of regions

 for (i=0 to n-1)

 { Region_available_data[i]=Inquiry_RC-

 Total_data(RCs[i], Required_Data);

 }

 index = Select_Best-Region(Region_available_Data[n]);

 Site-available_data[m]=Inquiry_RC-Site-data(index,

 Required_Data, Job j)

 Resource_id=Select_Best_Site(Site-available_data[m])

 Submit(job j, region index, resource Resource_id);

Algorithm 2: SS_communication_ReplicaCatalogue(Job J Data)

Inquiry_RC-Total_data (Required_Data);

{

 Size_of_available_data=Compare-with-available-

 data(Required_Data, List_of_data);

 Send_Total_available_data(GS), Size_of_available_data)

}

Inquiry_RC-Site-data(Required_Data)

{

 # m indicates number of sites in selected region

 for(i=0 to m-1)

 {

 available_data-on-

 sites[i]=Compare(List_Available_data site[i],

 Required_Data);

 }

 Send_available_data-on-sites(GS, available_data-on-

sites[m])

}

4. Applying Counting Bloom Filter to

Proposed Structure

Bloom filter can be used to register membership of
elements and investigate their membership. We develop
counting bloom filter to improve categorized data
(batch files) indexing and inquiring.

4.1. Data structure of Counting Bloom Filter

Bloom filter consist of array with n bits that are zero
initially. In this structure, characteristic of elements are

coded by using hash functions and these codes are
used to register membership of elements into bloom
filter array [4]. In grid systems, efficiency of resource
discovery mechanisms with bloom filter depends on
size of bloom filter, number of resources as well as
number and type of hashing functions. Thus, bloom
filter can be employed in cases where a huge amount
of information is sent in order to record characteristic
or to request resources within the network. For
implementing element’s membership in bloom filter, k
different hash functions are applied on element’s
characteristic. These hash functions create k numbers
between 1 and bloom filter size (n) for any element xi.
Then, these numbers are used as indexes of array
locations for element xi. During process of registering
element xi membership in bloom filter, zero bits in
specified indexes are setting to 1. In contrast, in
process of removing element xi membership from
bloom filter, the bits of specified indexes are setting to
zero. Primary defect of this method is that content of
indexes of element xi may be changed during
registering other elements in bloom filter. This
problem is called “positive error” in bloom filter.
From other hand, the content of element xi indexes
may be changed in removing other elements in bloom
filter. This problem is called “negative error” in bloom
filter. To avoid these errors “counting bloom filter” is
proposed. Counting bloom filter contains an array of n
counters that all cells are zero initially. During process
of registering element's membership in bloom filter,
one unit is added to counters of these locations while
in process of removing elements membership from
bloom filter, one unit is reduced from mentioned
location counters. During the process of replying the
requests by scheduler, bloom filter structure is
searched to find resource(s) with recorded
characteristics. In the process of inquiring
information, counters of the locations obtained from
hash functions are checked to see whether counters are
zero or not. If one or more counters are zero, then,
absolutely this element does not exist in the set [3].
But, if all counters are not zero, then this element
exists in the set probably. It is slightly probable that
tested counters are not zero due to addition of different
elements. Therefore, we will have a positive error. In
order to avoid positive errors, codes obtained from
hash functions are converted into a string, next, such
string codes are stored in bloom structure. In order to,
implement counting bloom filter structure effectively,
one list can be attached to any of array element in
which string codes of hash functions and resource
characteristics are stored. Counting bloom filter backs
removal elements membership from the structure and
there is no error in the process of deletion of the set
elements membership.

4.2. Applying Bloom Filter to Proposed

Structure

In data grid, structures of replica manager and RC can

be implemented in the form of centralized, distributed

A Hierarchical Approach to Improve Job Scheduling and Data Replication in Data Grid 281

and hierarchical architecture. Considering files with

specific accessibility (categorized data files), counting

bloom filter structure can be applied to the process of

batch files replication/deletion. Figure 1 shows

proposed network structure. In this structure, each site

contains a replica manager for sending information on

files replication/deletion in the site to the RC within the

same region and for managing inters site data

transmission. In proposed structure, we applied

centralized job scheduling. Figure 2 indicate distributed

structure of RC. Counting bloom filter can be used at

local and global RC levels in order to speed up process

of record, search and reply the requests from job

scheduler. Algorithm 3 shows the process of files

searching in regional RC. To execute each job; GS

inquires RC of the region that job is started for

information on data locations needed by jobs. As the

Algorithm 3 shows, during the process of job

scheduling, at first, scheduler get the name of files

required to perform the job and searches for location of

needed data. In proposed model, scheduler convert

names of (batch) files needed by jobs into one string

and applies K hash functions on this string and sends

obtained codes to the local RC (in the same region)

which searches received locations in bloom filter array.

Figure 2. Hierarchical structure for applying bloom filter.

Algorithm 3: Search_localReplicaCatalogue()

Receive (index , id) from GS ;
bloom_index= extract(index);

 j=0;
str=null;

GS _id, job_id) = extract(id);
for(i=0 to k-1)

 { j=bloom_index[i];

 if (bloomfilter[j].counter==0)

 { send (index , id, RegionalRC_id) to Top RC;

 return;

 }

 else if(i<k-1) str=str+'j';

 LocalResourcelist=search(bloomfilter[j].list , str);

 if (LocalResourcelist ==nu # false positive

 { send (index , id, RegionalGIS_id) to Top RC;

 return;

 }

 else

 send (LocalResourcelist, job_id) to GS;

It sends resource lists to scheduler in the case that all

counters are not zero and that code string of hash

functions exist on the list attached to the last location

of hash functions, therefore, batch files required by

jobs exists in local resources in the same region and

avoids remote data access. In the case that counters are

not zero, but there is no code string of hash functions

on the list attached to the last location, positive error

will be detected while name of batch files required by

jobs does not exist in local resources in the same

region. For this reason, local RC sends scheduler

request to global RC in order to search global

resources in other regions. Global RC does this search

similarly; and if resources having requested files exist,

it sends their list to the local RC which sends reply to

respective scheduler. Otherwise, the message of ‘No

resources’ is sent to scheduler so that they apply other

scheduling criteria based on scheduling policy to

execute the job. After assigning the job to a site,

replica manager transmit needed files to the site by

applying replication mechanisms. So, replica manager

decides about replicating batch files in the same site

and region to have access to these files without remote

data access in future requests.

Algorithm 4 shows the process of files replication/

deletion. Replica managers apply k different hash

functions on the files name string and send indexes

obtained from hash functions to the local RC, which

add/reduce one unit to/from counters of locations

obtained from hash functions and add/remove

resource arguments to/from the lists attached to the

last location of resulted codes. After that, local RC

sends hash codes to global RC to be performed in the

same way as that done in local RC. In this structure

local RC is responsible for storing information on

location of files existing in the same region and we

applied global RC, in order to, increase efficiency of

job scheduling with global information.

Algorithm 4:ReplicaManager_Storefile()

str =String(files name);

for (i=0 to k-1)

 bloom_index[i]=hashi(str);

 index = compress(bloom_index);

 send (index , Resource_id) to related RC;

5. Simulation

Efficiency of hierarchical job scheduling and data

replication and using counting bloom filter in selecting

resources has been evaluated by Gridsim 5.2. Table 1

specifies the parameters that used in simulation. For

evaluating our work proposed data replication strategy

will be compared with Bandwidth Hierarchy based

Replication (BHR) and proposed job scheduling

policy will be compared with Data Present Relative

Load (DPRL) and relative load scheduling strategies.

282 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

0

5

10

15

20

25

30

35

40

45

50

0 3 6 9 12

 ClusterA ClusterB ClusterC ClusterD

JobA

JobB

JobC

JobD

JobE

Table1.Simulation parameters.

Number of Regions in Network 4

Average Number of Sites in each Region 20

Each Storage Element Capacity 10GB

External Link Bandwidth 10 Mbps

Internal Link Bandwidth 100 Mbps

Size of a File 500 Mbps

Files Modification Grant Read-Only

Location of Original Files Spread Randomly at Starting Simulation

Figure 3 has shown the comparison between

different job replication strategies. In DRS, the

successfully received replicas from other regions must

be stored locally to avoid between regions congestion

and bottleneck. DRS with considering the data locality

at region and site level, reduce the number of external

communication and respectively internal

communication to reduce data preparation time for job

execution. Therefore, DRS have less inter region

communication than BHR. Figure 3-b has shown the

comparison between different job scheduling and

replication strategies. Since, our SS schedules jobs to

certain specific region and sites according to required

data files, jobs would be executed on the region with

most required data, so data access latency and average

job execution time are decreased than other scheduling

strategies.

Average Inter-Communication

 Number of Jobs

a) Average inter-communication comparison between different replication strategies.

 A
v
er
ag
e
Jo
b
 E
x
ec
u
ti
o
n

 T
im
e
 (
S
ec
)

 Number of Jobs

b) Average job execution time based on different job scheduling and replication

strategies.

Figure 3. Make a comparison of job scheduling and replication

strategies based on average job execution time and inter-

communication.

Figures 4-a and b showed the distribution of where

jobs are executed. Since, SS schedule jobs to certain

specific sites and region according to requested data

files, jobs would be executed on a region with the most

required files. Therefore, the same types of jobs are

executed at the same region as shown in Figure 4-a.
The job distribution of DPRL is shown in Figure 4-

b. On the contrary, DPRL does not consider region
information and it schedules jobs to certain specific
site, therefore different job types would be executed on

a region and the number of remote data access would
be increased. It would lead to more overhead in
transferring file replicas between region and increase
data access latency.

N
u
m
b
er
 o
f
Jo
b
s

 Cluster A Cluster B Cluster C Cluster D

a) Job distribution based on job type for 500 jobs for combination of SS with DRS.

N
u
m
b
er
 o
f
Jo
b
s

 Cluster A Cluster B Cluster C Cluster D

b) Job distribution based on job type for 500 jobs for combination of DPRL with

LRU.

Figure 4. Make a comparison between scheduling and replication

combination based on Job distribution in regions.

During this simulation, measures of response time
average and the number of bytes transmitted over the
network were compared in the scheduling with using
Bloom filter and lists to discover resources. In this
simulation, we applied one global RC in data grid. For
following simulation, resources and users of data grid
were placed within 4 different regions stochastically.
Figure 5 illustrates changed average of bytes used by
any request with increasing number of resources. In
the process of bloom filter base search, scheduler
sends locations to be checked in bloom filter to the
local RC by applying hash functions on files name
instead of send list of files name, So, the number of
bytes sent over network is decreased compared to the
method not using bloom filter. Also, as simulation
results show, with increased number of resources in
the network, average of bytes transmitted for both list
and counting bloom filter remain almost unchanged.
This signifies scalability of proposed structure.

A
v
er
ag
e
o
f
B
y
te
s

 Number of Resource

Figure 5. Average of bytes used by any request with increasing

number of resource.

Figure 6 indicated changed total of bytes used by
any request with increasing number of users in data
grid. In proposed method, schedulers request for these
same locations obtained from hash functions,
therefore, the number of bytes sent between
schedulers, local and global RC is much less than that

0

2

4

6

8

10

12

14

16

100 200 300 400 500

DRS
BHR

0

10

20

30

40

0 3 6 9 12

N
u
m
b
e
r
 o
f
J
o
b
s

JobA

JobB

JobC

JobD

JobE

A Hierarchical Approach to Improve Job Scheduling and Data Replication in Data Grid 283

in the method not using bloom filters which sends files
name.

 Number of Users

Figure 6. Total of bytes used by any request with increasing number

of users.

Figure 7 indicates average of bytes used for each
request with increasing Bloom filter size according to
the number of resources. Size of bloom filters is one of
the important factors lowering the rate of positive error
while increasing the number of bytes sent over the
network. As seen in Figure 7, size of bloom filter
changes as a function of the number of resources and
horizontal x-axis indicate this size coefficient of
increase in accordance with number of resources. This
simulation shows that average of bytes transmitted for
each request increases as the size of bloom filter grows
bigger. For this reason, selection the appropriate size of
bloom filter for establishing balance between positive
error reduction and reduction of bytes sent over the
network has an effect on the efficiency of entire system
and on bandwidth saving.

 A
v
er
ag
e
 B
y
te
s

 Bloom Filter Size

Figure 7. Total of bytes used by any request with increasing number

of users

Figure 8 shows comparison of average changes of
used bytes with increased number of regions for modes
with and without bloom filter of resource discovery in
the first phase of scheduling. Results of simulation
indicate that with increased number of regions, the
number of bytes sent over the network is much less
than that in the method not using bloom filter.

 A
v
er
ag
e
 B
y
te
s

 Number of Regions

Figure 8. Average of bytes used with increasing number of regions.

Figure 9 shows change in average of response time

with an increase in resources number in the whole grid

system for both modes of resource discovery with and

without bloom filter. This diagram indicates that

responses time in resource discovery with bloom filter

is much less than without bloom filter. In the cases

that requested resources exist in local region, location

obtained from hash functions are searched only in

bloom filter of local RC, with responses being sent to

schedulers. Otherwise, obtained locations are also

checked in global RC, with time of responding to

scheduler being increased. In conventional method, on

the other hand, requested file characteristics are

searched initially in the list of resources available in

local region and, secondly, they are searched in global

resources in the case of absence of resources in local

region. Since, list search is done more slowly than

check of locations in bloom filter. Therefore, in
proposed method, average of response time is much

less than that in conventional method.

A
v
er
ag
e
o
f
R
es
p
o
n
se

T
im
e
 (
M
S
)

 Number of Regions

Figure 9. Average of response time with an increase in resources

number.

6. Discussion

We proposed a structure for distributed replication and
effective job scheduling in data grids. To save network
bandwidth and reduce data access time, we propose a
job scheduling policy SS and distributed replication
mechanism that consider regional information in job
placement decision. We apply RC for each region to
facilitate selecting best region and site for job
execution. We can conclude that combination of SS
and DRS strategy can be effectively utilized when
hierarchy of bandwidth appears. Also, this structure is
scalable for resource management while it deals with
increasing number of resources and files. Proposed
hierarchical structure reduces the average of bytes
transmitted over the network and decreases time of
responding to schedulers' request by using counting
bloom filter. In proposed structure, application of hash
functions on scheduler side and replica manager in the
site reduces the number of bytes transmitted in
processes of data replication/deletion and searching
files from resources between scheduler, RC and
replica manager components in the network. If
requested data be available in resources within local
regions, local resources list are sent to schedulers,
reducing response time to scheduler’s requests
considerably. Otherwise, scheduler’s requests are
searched in bloom filter of global resources. Proposed
structure, increases scalability of resource
management as well as decreases average of bytes
transmitted over the network for resource discovery.
The most important advantage of using bloom filter is
reducing the time to gathering information for job

284 The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015

scheduling decision. Although, proposed structure
avoids of bottleneck in schedulers, local and global
RC’s by hierarchical approach.

Acknowledgements

This research is pecuniary supported by “Eslamabad-
E-Gharb Branch, Islamic Azad University”.

References

[1] Abdi S., Pedram H., and Mohammadi S., “The

Impact of Data Replication on Job Scheduling

Performance in Hierarchical Data Grid,”

International Journal on Applications of Graph

Theory in Wireless ad hoc Networks and Sensor

Networks, vol. 2, no. 3, pp. 15-25, 2010.

[2] Abdi S., Pedram H., and Mohammadi S., “Two

Level Job Scheduling and Data Replication in

Data Grid,” International Journal of Grid

Computing and Applications, vol. 1, no. 1, pp 23-

37, 2010.

[3] Bonomi F., Mitzenmacher M., Panigrahy R.,

Singh S., and Varghese G., “An Improved

Construction for Counting Bloom Filters,” in

Proceedings of the 14
th
 Annual European

Symposium on Algorithms, London, UK, pp. 684-

695, 2006.

[4] Broder A. and Mitzenmacher M., “Network

Applications of Bloom Filters: A Survey,”

Internet Mathematics, vol. 1, no. 4, pp. 485-509,

2002.

[5] Chang S., Chang S., and Lin Y., “Job Scheduling

and Data Replication on Data Grids,” Future

Generation Computer Systems, vol. 23, no. 7, pp.

846-860, 2007.

[6] Cheng S., Chang C., and Zhang L., “An Efficient

Service Discovery Algorithm for Counting Bloom

Filter-Based Service Registry,” in Proceedings of

IEEE International Conference on Web Services,

Los Angeles, California, USA, pp. 157-164, 2009.

[7] Cokuslu D., Hameurlain A., and Erciyes K., “Grid

Resource Discovery Based on Centralized and

Hierarchical Architectures,” International Journal

for Infonomics, vol. 3, no. 1, pp. 227-233, 2010.

[8] Dang N. and Lim B., “Combination of

Replication and Scheduling in Data Grids,”

International Journal of Computer Science and

Network Security, vol. 7, no. 3, pp. 304-308,

2007.

[9] Elghirani A., Subrata R., Zomaya Y., and Al

Mazari A., “Performance Enhancement through

Hybrid Replication and Genetic Algorithm Co-

Scheduling in Data Grids,” in Proceedings of

IEEE/ACS International Conference on

Computer Systems and Applications, Doha, Qatar,

pp. 436-443, 2008.

[10] Esmaeelimanesh R., Jamshidi M., Zareie A., Abdi

S., Parseh F., and Parandin F., “Peresentation an

Approach for Useful Availability Servers Cloud

Computing in Schedule List Algorithm,”

International Journal of Computer Science

Issue, vol. 9, no. 3, pp. 465-470, 2012.

[11] Foster I. and Ranganathan K., “Design and

Evaluation of Dynamic Replication Strategies

for High Performance Data Grids,” in

Proceedings of International Conference on

Computing in High Energy and Nuclear Physics,

Beijing, China, pp. 1-17,2001.

[12] Goering P. and Heijenk G., “Service Discovery

using Bloom Filters,” in Proceedings 12
th

Annual Conference of the Advanced School for

Computing and Imaging, Belgium, pp. 219-227,

2006.

[13] Jianhua J., Huifang I., Gaochao X., and Xiaohui

W., “Scheduling Algorithm with Potential

Behaviors,” Journal of Computers, vol. 3, no.

12, pp. 1-9, 2008.

[14] Krauter K., Buyya R., and Maheswaran M., “A

Taxonomy and Survey of Grid Resource

Management Systems for Distributed

Computing,” Software Practice and Experience,

vol. 32, no. 2, pp. 135-164, 2002.

[15] Krauter K. and Murshed M., “GridSim: A

Toolkit for the Modelling and Simulation of

Distributed Resource Management and

Scheduling for Grid Computing,” Concurrency

And Computation: Practice and Experience, vol.

14, no. 13, pp. 1175-1220, 2002.

[16] Mohamed H. and Epema J., “An Evaluation of

the Close-to-files Processor and Data Co-

allocation Policy in Multiclusters,” in

Proceedings of IEEE International Conference

on Cluster Computing, California, USA, pp.

287-298. 2004,

[17] Park M., Kim H., Ko B., and Yoon S., Dynamic

Grid Replication Strategy based on Internet

Hierarchy, Springer-Verlag, Berlin Heidelberg,

2004.

[18] Parthasarathy S. and kundur D., “Bloom Filter

based Intrusion Detection for Smart Grid

SCADA,” in Proceedings of the 25
th
 IEEE

Canadian Conference on Electrical &

Computer Engineering, Montreal, pp. 1-6, 2012.

[19] Por Y., Ong Y., Beh D., and Ismail M., “A Grid

Enabled E-Theses and Dissertations Repository

System,” the International Arab Journal of

Information Technology, vol. 9, no. 4, pp. 392-

401, 2012.

[20] Ranganathan K. and Foster I., “Identifying

Dynamic Replication Strategies for a High

Performance Data Grid,” in Proceedings of the

2
nd
 International Workshop on Grid Computing,

London, UK, pp. 75-86, 2001.

[21] Ranganathan K. and Foster I., “Computation

Scheduling and Data Replication Algorithm for

Data Grid,” available at:

A Hierarchical Approach to Improve Job Scheduling and Data Replication in Data Grid 285

http://www.mcs.anl.gov/papers/P1081.pdf, last

visited 2003.

[22] Tang M., Lee S., Tang X., and Yeo K., “The

Impact of Data Replication on Job Scheduling

Performance in the Data Grid,” Future

Generation Computer Systems, vol. 22, no. 3, pp.

254-268 2006.

Somayeh Abdi received her BS

degree in software engineering from

Razi University in Kermanshah in

2005 and MS degree in the same

course from Science and Research

Branch, Azad University, Tehran, in

2010. Currently, she is pursuing her

PhD degree in software engineering in Science and

Research Branch, Azad University, Tehran. Her

research interests include distributed system; cloud

computing, resource management and resource

discovery in Grid Computing. She is currently a faculty

member at Eslam_Abade_Gharb Branch, Azad

University. Her PhD is under supervision of Dr.

Hashemi.

Seyyed Hashemi received the MS

degree in computer science from

Amirkabir University of Technology

(Tehran Polytechnic University) in

2003 and the PhD degree in computer

science from the Azad University in

2009. Both of them ware under

supervision of Professor Mohammadreza Razzazi.

Moreover, he is currently a faculty member at Science

and Research Branch, Azad University, Tehran. His

current research interests include software intensive

systems, e-x systems (e-commerce, e-government, e-

business and so on), global village services, grid

computing, ibm ssme, business modeling and agile

enterprise architecting through isrup.

